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Abstract. Hierarchies of awareness and belief arise in games with unawareness, similarly to belief hierarchies in

standard games. A natural question is whether a model generating awareness and belief hierarchies closes, i.e.

whether each hierarchy describes the player’s awareness of the hierarchies of other players and beliefs over these.
This paper proves that the model closes by constructing universal type spaces for belief and unawareness, where

each type has a belief over all types. An alternative proof is possible if topology is added to the type spaces.

Unawareness of agents and unawareness of higher-order reasoning permit a similar construction of a universal type
space as propositional unawareness.

1. Introduction

There are many situations where the payoff of an agent depends on the actions of other agents and on uncertain
external factors. The actions of the agents depend on their reasoning, so to choose the best action, an agent has
to reason about the reasoning of others, their reasoning about the reasoning of others, and so on to arbitrarily
high order. With complete information, this infinite regress can be avoided by imposing a fixed-point equilibrium
concept, but with incomplete information, the process generates infinite hierarchies of reasoning. A natural question
is whether the infinite hierarchies summarize all the uncertainty in the game or whether it is necessary to go even
further, describing a player’s reasoning about the opponents’ infinite hierarchies, about their reasoning about their
opponents’ hierarchies, etc.

In standard games, the reasoning of an agent is described by a probability distribution over known outcomes
(exogenous uncertainties and other agents’ possible beliefs). The seminal paper of Mertens and Zamir (1985)
was the first to show that the initial hierarchies of reasoning are sufficient—each hierarchy encodes a probability
distribution over the set of hierarchies, thus closing the model. This result has been extended to more general
spaces by Brandenburger and Dekel (1993). The assumptions are relaxed further in Heifetz and Samet (1998b),
but at the cost of not including all hierarchies.

Not all uncertainty is describable by a probability distribution, but infinite regress is a feature of any kind of
interactive reasoning. The same question of closure of the hierachical model then arises as for probabilistic beliefs.
If the uncertainty is described by conditional probability systems, compact continuous possibility correspondences
or compact sets of probabilities, the papers of Battigalli and Siniscalchi (1999); Mariotti, Meier, and Piccione (2005)
and Ahn (2007) show that the hierarchies capture all uncertainty about the hierarchies.

On the other hand, for knowledge and similar information structures, reasoning about other agents’ reasoning
may continue indefinitely, as shown in Heifetz and Samet (1998a); Meier (2005), therefore there may be no level of
the hierarchies that fully describes the uncertainty in the model. With additional assumptions on the knowledge
operators, closure can be obtained (Meier, 2008; Mariotti, Meier, and Piccione, 2005).

All the abovementioned kinds of uncertainty share the property that the agents know all possible outcomes.
In many real-world decision problems this is not the case—the agents may be unaware of some aspects of the
environment. This may give rise to novel behaviour, as illustrated in the game in Fig. 1. Choice under unawareness
may exhibit ‘reverse Bayesianism’, i.e. updating may lead an initially null event to receive positive weight in
decisions (Karni and Vierø, 2010). The experiment of Mengel, Tsakas, and Vostroknutov (2011) shows that being
exposed to unawareness increases the risk aversion of experimental subjects.

To better describe such situations, unawareness has been added to games by Feinberg (2009); Grant and Quiggin
(2009); Halpern (2008); Rêgo and Halpern (2007); Heifetz, Meier, and Schipper (2011a). In games with unawareness,
the players are aware of only some aspects of the game, form beliefs about external uncertainties and other players’
awareness and beliefs, and so on, giving rise to infinite hierarchies of awareness and belief. Similarly to standard
games, there is a question as to whether the hierarchies encapsulate all uncertainty in the model. Given the results
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Figure 1. A game with unawareness from Feinberg (2009). Beliefs are represented by arrows,
solid for player i and dashed for player j. At the top left game j believes the game to be the top
left, while i believes it to be the top right. The solution is (a3, b3), while without unawareness, it
would be (a2, b1) in the top games and (in pure strategies) either (a2, b1) or (a1, b2) in the bottom
game (Feinberg, 2009).

in the literature that the hierarchical model closes for some kinds of uncertainty, but not for others, the answer is
not obvious in the case of unawareness.

This paper proves that in the case of propositional unawareness, unawareness of agents, unawareness of higher-
order reasoning, or a combination of these, the infinite hierarchies of awareness and belief include the description of
awareness and belief about the hierarchies. Modelling agent-based unawareness and combined kinds of unawareness
together with probabilistic beliefs appears to be new. Together with knowledge, many kinds of unawareness have
been studied in a propositional model using modal logic by Fagin and Halpern (1988).

In propositional unawareness, the awareness levels are based on partitions of the states of nature. An agent with
a particular awareness level can reason about the partition corresponding to that level, about others’ reasoning
about that partition, their reasoning about his reasoning about the partition, etc. Propositional unawareness is
the most common kind used in the literature, in both propositional models (Halpern, 2001; Heifetz, Meier, and
Schipper, 2008; Halpern and Rêgo, 2008) and set-based ones (Modica and Rustichini, 1999; Heifetz, Meier, and
Schipper, 2006; Li, 2009).

Under unawareness of agents, all agents have the same partition of the states of nature. Awareness levels are
based on sets of agents, so an agent with limited awareness is able to reason only about a subset of agents, their
reasoning about this subset of agents, their reasoning about his reasoning about this subset, etc. This kind of
unawareness may be especially relevant for games with unawareness.

Unawareness of higher-order reasoning is an extension of Kets (2010) to purely measurable spaces. It seems the
least natural of the three kinds of unawareness considered here. Bounded reasoning may be the result of other
factors besides unawareness, e.g. computational limitations, time constraints or heuristic decision making. One
instance where unawareness is a natural cause of bounded reasoning is when decision makers lack a theory of mind,
such as animals or young children. In that case the agents are intrinsically unable to reason about the beliefs of
others.

A combination of the above kinds of unawareness means that the agent can only reason about a coarse partition
of the states of nature, a subset of the other agents reasoning about that partition, their reasoning about the
reasoning of that subset of agents and so on, up to a finite order.

Not all kinds of unawareness are considered in this paper. Unawareness of a particular belief (e.g. someone
putting probability 1

3 on it snowing is inconceivable to an agent) is ruled out, as is unawareness of lower orders of
belief while being aware of higher orders. The agent can put zero probability on these beliefs, but not be unaware
of them. Syntactic unawareness, under which the agent can be aware of ‘it rains or it snows’ but unaware of ‘it
snows or it rains’, is also excluded.

Two other papers independently proving the existence of the universal type space with propositional unawareness
are Heifetz, Meier, and Schipper (2011b) and Pintér and Udvari (2011). Both study propositional unawareness, and
Pintér and Udvari also cover bounded reasoning along the lines of Kets (2010). In the present paper and in that of
Heifetz, Meier, and Schipper, the awareness levels are sets of types whose beliefs have the same level of detail, while
in Pintér and Udvari (2011) the awareness levels are σ-algebras on a common space. Due to the different definition,
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Figure 2. A type space with unawareness. Beliefs are represented by arrows, solid for player i
and dashed for player j. At type t1, agent j is aware of t′1, but puts probability zero on it. At type
t′1, agent j is unaware of t′1 and t1.

unawareness in Pintér and Udvari’s paper is subject to the Dekel, Lipman, and Rustichini (1998) impossibility
result discussed below and should be interpreted differently from other unawareness models.

In Heifetz, Meier, and Schipper’s paper, the proof of universality requires topological assumptions, which is not
the case in the present paper and that of Pintér and Udvari. The present paper also describes unawareness of agents
and the combination of different kinds of unawareness, which the other two papers do not.

Unawareness type spaces have been used to prove no-trade and agreement theorems (Heifetz, Meier, and Schipper,
2007). Other potential applications of universal type spaces with unawareness mirror those of universal belief type
spaces—studying common priors (Mertens and Zamir, 1985), common certainty of the structure (Brandenburger
and Dekel, 1993) and robustness of solution concepts to perturbations of information (Chen, Di Tillio, Faingold,
and Xiong, 2010). Type spaces with unawareness enable games with unawareness to be analyzed, in addition to
standard games.

The structure of the universal type space with unawareness constructed here reflects the structure of games with
unawareness. Games with unawareness consist of a tree of standard games (as in Fig. 1), partially ordered by
inclusion of the set of nodes (Feinberg, 2009; Heifetz, Meier, and Schipper, 2011a). Each game describes the view
of an agent at a particular awareness level. In each node of each game, the players perceive themselves to be in
some node in one of the weakly smaller games, e.g. in Fig. 1 at the top right game, agent j perceives himself to be
in the smaller game at the bottom. The awareness level of a player at a node is determined by the game the player
perceives himself to be in, not the game he is actually in. An agent attributes to others weakly lower awareness
than his own level, e.g. in Fig. 1 in the top left game, j attributes the same awareness to i as to himself, while i
attributes lower awareness to j.

In the type spaces with unawareness in this paper, such as the one in Fig. 2, each type encodes the state of
nature and the belief of each player. Each type is labelled with an awareness level (the levels are 0 and 1 in Fig. 2).
The belief of a player in a type is over types with weakly less awareness, which reflects believing weakly smaller
games. The level of types that an agent believes is that agent’s awareness level, which mirrors the situation in
games with unawareness where the believed game is the awareness level of a player. Uncertainty about the beliefs
and awareness of others is captured by a probability distribution over their types, which in games corresponds to a
belief over the nodes in a player’s information set.

Unawareness is different from probability zero in games with unawareness and the corresponding type spaces,
e.g. unawareness is symmetric—if an agent is unaware of an event, he is unaware of its negation, while putting
probability zero on an event implies putting probability one on its negation. This is illustrated in Fig. 2, where at
type t′1, agent j is unaware of both t1 and t′1, while at type t1, agent j puts probability one on t1 and zero on t′1.

The universal type space with unawareness in this paper, like any model with unawareness, has to bypass the
impossibility result of Dekel, Lipman, and Rustichini (1998) that standard state spaces preclude unawareness. Given
natural properties of knowledge and unawareness, the result of Dekel, Lipman, and Rustichini rests on two basic
axioms. The first axiom (real states) requires the negation and conjunction operators to behave in the standard
way, and the second (event sufficiency) requires the operators for knowledge and awareness to take events to events.
Knowledge and awareness of a statement cannot depend on other factors, such as the syntactic form of the statement.
As pointed out by Heifetz, Meier, and Schipper (2006); Schipper (2011), one of these axioms must be relaxed to
model nontrivial unawareness. Economics models usually relax real states, while the logic literature mostly forgoes
event sufficiency.

This paper follows the economics literature in omitting the real states axiom and keeping event sufficiency. This
means negation and disjunction are nonstandard, but awareness depends only on the set of states belonging to an
event, not on how the event is constructed or expressed. Section 4 shows that the desirable properties of knowledge
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and awareness listed in Dekel, Lipman, and Rustichini (1998) hold in the model of this paper, and section 3 shows
awareness is nontrivial. Therefore the universal type space with unawareness bypasses the impossibility result.

The next section proves the existence of the universal type space with propositional unawareness and shows how
it may be unpacked into hierarchies of belief and awareness. Section 3 describes the events in the model and the
belief and awareness operators. The connection to Dekel, Lipman, and Rustichini (1998) is described in section 4.
Unawareness of agents, of higher order reasoning, and a combination of three kinds of unawareness are considered
in section 5. The construction with a topology is presented in section 6 and compared to the model of Heifetz,
Meier, and Schipper (2011b).

2. The existence of universal type spaces with unawareness

In this section, propositional unawareness is added to the universal space of belief hierarchies of Heifetz and
Samet (1998b). Theirs is chosen as the basic framework, because unlike the earlier belief hierarchies of Mertens
and Zamir (1985); Brandenburger and Dekel (1993), it has no topological structure and only uses measurability
assumptions. A topology of the type space is not a necessary or natural component of descriptions of beliefs, as
argued in Heifetz and Samet (1998b); Pintér (2010), but in the topological case, an alternative proof is possible.

The existence proof of the universal type space relies on the category-theoretic results of (Moss and Viglizzo,
2006, Theorem 6.4) and (Viglizzo, 2005, Theorem 7.1), which use purely measurable spaces. When topological
structure is added to make all spaces Polish, the alternate universality proof (Theorem 11 below) uses the results
of Schubert (2008); Doberkat and Schubert (2011).

2.1. Notation. Fix for most of the paper a measurable space S as the set of states of nature and a finite set I
as the set of agents (denoted i, j ∈ I). Before defining the universal type space and proving its existence, some
notation is needed. Let

⊔
denote disjoint union. The complement of E is Ec. Nature is treated notationally as

agent 0 and I0 = I ∪ {0}.
For a measurable space M , its σ-algebra and the coarsenings of that σ-algebra are denoted by GM , FM , EM ,

DM , with GM being the finest. The subscript is omitted when no confusion should arise. The coarsest common
refinement of a set of σ-algebras {Fn : n ∈ N} is denoted ∨nFn. The notation F . E means that F is a refinement
of E .

For a measurable space M with σ-algebra G, denote by ∆(M) the set of probability measures over X, endowed
with the σ-algebra generated by

{βq(E) : E ∈ G, q ∈ [0, 1]} , where βq(E) = {µ ∈ ∆(M) : µ(E) ≥ q} .
Abusing notation, the σ-algebra on ∆(M) generated this way from G is also denoted G, and similarly for ∆(∆(M))
etc. As usual, δt denotes the Dirac delta function on t ∈M , i.e. the probability distribution concentrated on t.

The product of a vector of measurable spaces (Mi)i∈I0 is ×i∈I0Mi = M and the product of all spaces except i
in the vector is ×j∈I0\{i}Mi = M−i. A similar convention applies to collections of measurable spaces with more

than one index (MF,i)
i∈I0
F/G , and to collections of measurable functions. The product over one index keeps the other

index, Mi = ×F/GMF,i, and the product over both indexes drops both, M = ×F/G, i∈I0MF,i. Abusing notation,

the collection (MF,i)
i∈I0
F/G may also be denoted M . Products of measurable spaces have the product σ-algebra.

With propositional unawareness, the set of awareness levels is generated by a complete semilattice of σ-algebras
on the states of nature, closed under taking coarsest common refinements. The whole lattice is {F : F / G}, where
G is the original σ-algebra on S. One example of such a semilattice can be constructed by starting from a collection
of measurable sets {En ⊆ S : n ∈ N}, taking for each En the σ-algebra Fn = {En, Ecn, S, ∅}, and adding all coarsest
common refinements of sets of Fn. These σ-algebras on states of nature are extended to the whole type space by
allowing agents with awareness F to distinguish only events in F , others’ beliefs differing on these events, their
second order beliefs differing on beliefs differing on these events, etc. For each F , the set S with the σ-algebra F
is denoted SF .

2.2. Definitions and existence. The definitions of type spaces with unawareness, type morphisms and the uni-
versal type space with unawareness are presented next, followed by the existence proof. Type spaces with belief
and propositional unawareness are defined the same way here as in Heifetz, Meier, and Schipper (2007)1, since both
papers extend the construction of Heifetz, Meier, and Schipper (2006) to the probabilistic case.

Definition 1. For states of nature S, agents I and maximal awareness level G, a type space with propositional
unawareness is (M, g) = ((MF,i)

i∈I0
F/G , (gF,i)

i∈I0
F/G) such that

(i) MF,i is a measurable space for each F and i, and MF,0 = SF for each F ,

1The author thanks Aviad Heifetz for pointing out this connection.
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(ii) for each F and i ∈ I, the type function gF,i : MF,i →
⊔
E/F ∆(ME,−i) is measurable,

(iii) for each F , the state of nature function gF,0 : MF,0 → SF is the identity.

The type function gi for agent i consists of all the gF,i. For ease of notation, gi may be written as mapping M
to ∆(M−i), with the understanding that gi only depends on the i-th coordinate of its argument. The full vector g
maps M to the vector of measurable spaces

V (M) =

SF ,(⊔
E/F

∆(ME,−i)

)i∈I
F⊆G

(1)

For type t ∈ MF for some F , the beliefs of i are over ME,−i for some E / F , so compared to the space where
t is drawn from, the dimension ME,i is missing. To obtain higher order belief, gi must be iterated, so its domain
is implicitly extended to the missing dimension in a way that ensures the agent is certain of his beliefs modulo
awareness, gi(t) ∈ ∆(ME,−i) × δtE,i . The type tE,i that i is certain of at ti is the natural projection of ti to ti’s
awareness level E , meaning gi(ti) = gi(tE,i). If different types have different beliefs, there is a unique such tE,i. If
many tE,i satisfy the condition, we can pick any of them as the extension. There is no circularity in the definition
of the extension, since tE,i is chosen based on the equality of gi(ti) and gi(tE,i) as elements of ∆(ME,−i) before the
extension, not as elements of ∆(ME) after the extension.

For type spaces M ′ and M with V (M), V (M ′) defined by Eq.̃(1) and for a vector of measurable functions

z = (zF,i)
i∈I0
F/G : M ′ →M mapping one type space to another, define the function V (z) : V (M ′)→ V (M) mapping

the beliefs in one type space to the beliefs in another as follows. First set V (zF,0) = zF,0 for all F / G. For i ∈ I,
F / G and µ′F,i ∈ ∆(M ′F,−i), let

V (z)(µ′F,i) = µF,i ∈ ∆(MF,−i) s.t. µF,i(E) = µ′F,i(z
−1
F,−i(E)) ∀E ⊆MF,−i measurable. (2)

To connect type spaces with unawareness to each other, type morphisms are needed. These are maps from one
type space to another that preserve belief and awareness information.

Definition 2. A type morphism between (M ′, g′) and (M, g) is a vector f = (fF,i)
i∈I0
F/G of measurable functions

fF,i : M ′F,i →MF,i, such that

gi(f(t′))(E) = g′i(t
′)(f−1
D,−i(E)) ∀i ∈ I ∀D / G ∀t′ s.t. g′i(t

′) ∈ ∆(M ′D,−i) ∀E ⊆MD,−i measurable. (3)

A type morphism f is an isomorphism if it is a measure-preserving bijection between M ′ and M , i.e. f−1 : M →M ′

is also a type morphism.

The intuition for Eq. (3) that a type morphism must satisfy is illustrated in the following commutative diagram,
where V (M) is defined in Eq. (1) and V (f) in Eq. (2). Finding first the beliefs of a type in the original space and
then transferring them to the other space has to give the same result as first transferring the type to the other
space and then finding its beliefs there, i.e. g ◦ f = V (f) ◦ g′.

M ′ V (M ′)

M V (M)

g′

V (f)f

g

The definition of a universal type space is standard—it is a type space containing all other type spaces.

Definition 3. A type space with unawareness (Ω, g) is universal if for every type space (M ′, g′) with the same set
of agents I, awareness levels {Fn : n ∈ N} and states of nature S there is a unique type morphism from (M ′, g′) to
(Ω, g).

The existence and uniqueness of a universal type space for propositional unawareness is proved in Theorem 1.
The proof in the appendix translates the problem into category theory and uses Viglizzo (2005), which generalizes
Heifetz and Samet (1998b). The proof is similar to Pintér and Udvari (2011), but the definition of a type space
differs from that paper.

The universal type space in the present section is the set of all hierarchies of belief and awareness that some
type in some type space maps to. The set of all hierarchies is constructed in subsection 2.3. If the states of nature
form a Polish space, the universal type space is the set of all consistent hierarchies of belief and awareness. The
proof of this is a special case of Theorem 3 in Schubert (2008) and is given in subsection 6. For propositional
unawareness, Heifetz, Meier, and Schipper (2011a) independently prove the existence of a universal type space
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under the assumption that the states of nature form a Hausdorff topological space. The proof in this section differs
from Schubert (2008); Heifetz, Meier, and Schipper (2011a) because it does not use any topological assumptions.

Theorem 1. For fixed sets of states of nature S, agents I and awareness levels {Fn : n ∈ N}, there exists a
universal type space with propositional unawareness (Ω, g) unique up to isomorphism. In (Ω, g), the type function
g is an isomorphism.

For all type spaces with the sets of states of nature, agents or awareness levels being S′ ⊆ S, I ′ ⊆ I and
{Fn : n ∈ N ′ ⊆ N} respectively, the universal type space for S, I and {Fn : n ∈ N} is weak-universal, meaning a
type morphism into it exists, but is not unique. In particular, a universal type space for S′, I ′ and {Fn : n ∈ N ′ ⊆ N}
can be embedded in the universal space for S, I and {Fn : n ∈ N}. The embedding is nonunique if labels of states,
agents or awareness levels can be changed, e.g. agent 1 in a type space with I = {1} can be mapped to either agent
1 or 2 in a type space with I = {1, 2}. If labels must be preserved, the embedding is unique, but may not exist
when intuitively it should: a type space with I = {1, 2} cannot then be embedded in a space with I = {2, 3} or
vice versa.

2.3. From types to belief hierarchies with unawareness. Two proofs of the existence of the universal space
are given in Viglizzo (2005)—one constructs the space so that a type equals the set of all events which contain the
type, the other shows that a subset of the set of all hierarchies is the universal type space. Section 2.2 showed that
the universal type space with unawareness exists, while section 3 will describe the events in the universal space
and connect a type to the events containing it. The present subsection unpacks types into hierarchies of belief and
awareness.

First the set of all hierarchies is defined and then the function from types to hierarchies is given. The construction
is similar to Heifetz and Samet (1998b). The base case of the inductive construction of hierarchies of belief and
awareness is setting H0

F,i to be a singleton for all i ∈ I and F /G, and setting Hk
F,0 = SF for all k ≥ 0 and all F /G.

The inductive step is to apply the transformation V from Eq. (1) an infinite number of times to
(
H0
F,i
)i∈I0
F/G .

Therefore Hk+1 = V (Hk), which in more detail is Hk+1
F,0 = SF and for i 6= 0,

Hk+1
F,i =

⊔
E/F

∆
(
Hk
E,−i

)
.

Agent i at awareness F has the set of hierarchies HF,i = ×k≥0H
k
F,i. For each k there is a natural projection from

HF,i to Hk
F,i. The set of hierarchies of all players at all awareness levels is H =

(
SF , (HF,i)

i∈I
)
F/G

, with natural

projections to the set of order-k hierarchies for all k. The universal type space Ω is mapped to a strict subset of H.
The construction of the mapping ensures that all elements in the image of Ω are coherent, i.e. beliefs of different
orders do not contradict each other.

The mapping h = (hF,i)
i∈I0
F/G : Ω → H from types to hierarchies is also constructed inductively. To define hF,i,

first hkF,i : Ω → Hk
F,i is defined for every k. Let hkF,0 = gF,0 for every k. For i ∈ I, h0

F,i is uniquely defined

as the constant function mapping to the singleton H0
F,i. Denote (hkE,i)

j∈I0\i by hkE,−i and inductively define for

each E / F / G, t ∈ Ω and measurable F ⊆ Hk
E,−i the function hk+1

F,i as hk+1
F,i (t)(F ) = gi(t)((h

k
E,−i)

−1(F )), i.e.

hk+1 = V (hk) ◦ g, where V (hk) is defined in 2. For each F / G and i ∈ I, define hF,i = (hkF,i)k≥0 and hF,0 = gF,0.
This completes the construction of h.

The definition of h did not depend on Ω being universal. The same construction can be used for any type space
with unawareness, either directly or by first mapping the type space to the universal space. One way to define the
universal space is as those elements of H to which some type in some type space with unawareness is mapped by
the h defined on that type space. This is one of the two constructive proofs of the existence of the universal space
in Viglizzo (2005).

3. Events, belief and awareness

In this section, the form and properties of events are described, where events are those subsets of Ω that the
agents can reason about. First, set operators are defined on general measurable subsets of Ω. Then the set operators
are used to inductively define events from measurable sets of states of nature. The model follows Heifetz, Meier,
and Schipper (2006) in building unawareness into the structure of the space.

The next subsection defines set operations, belief and awareness in the universal type space with unawareness
and constructs events. Belief and awareness are characterized in more detail in subsection 3.2.
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Figure 3. The type space with unawareness from the introduction.

3.1. Conjunction, negation and epistemic operators. The universal type space with unawareness Ω =
(ΩF,i)

F/G
i∈I0 can be divided into layers ΩF = ×i∈I0ΩF,i, one for each awareness level F / G. In Fig. 3, there are

two awareness levels: types with subscript 1 are at the higher awareness level, the type t0 is at the lower level.
Associate with each ΩF an object ∅F , which is the empty set labelled with the awareness level F . It acts as the

empty set of the layer ΩF .
Measurable subsets of Ω are the disjoint unions of measurable sets, at most one set per layer. Their form is

E =
⊔
F∈ζ EF for some nonempty ζ = {Fn : n ∈ N ′ ⊆ N}, where for each F ∈ ζ, the measurable EF ⊆ ΩF is called

the F-section of E. The operators for conjunction, negation, awareness and belief are defined on the measurable
subsets.

The conjunction of sets E =
⊔
F∈ζ EF and F =

⊔
E∈χ FE is defined as E ∩ F =

⊔
E∈ζ∩χ (EE ∩ FE), where it

may be the case that EE ∩ FE = ∅E for some layers E . The negation of E is Ec
′

=
⊔
F∈ζ (ΩF \ EF ). It satisfies

(Ec
′
)c
′

= E, but is not equal to Ec, the complement of E in Ω. The nonstandard negation is what allows the
present model to bypass the Dekel, Lipman, and Rustichini (1998) impossibility result stating that standard state
spaces preclude unawareness. This is discussed in more detail in section 4.

Disjunction of sets is defined from conjunction and negation via De Morgan’s laws: E ∪′ F = (Ec
′ ∩ F c′)c′ .

Equality of sets E and F requires ζ = χ and EE = FE for each E ∈ ζ. Set E implies F (is a subset of F ), written as
E ⊆′ F if ζ = χ and EE ⊆ FE for each E ∈ ζ. Equality and implication respect the usual propositional tautologies:
E = F is the same as E ∩ F ∪′ (Ec′ ∩ F c′), and E ⊆′ F is the same as Ec

′ ∪′ F .2

Operations on sets are illustrated using the type space corresponding to Feinberg’s game in Fig. 3. Abusing
notation, we denote the singleton sets {t} by t. The negation of t1 is tc

′

1 = t′1, not the complement tc1 = {t′1, t0}.
The disjunction of t1 and {t′1, t0} is t1 ∪′ {t′1, t0} = {t1, t′1}, not the set-theoretic union {t1, t′1, t0}.

The set BirE in which agent i puts probability at least r on E consists of measurable sets from the layers ΩD
that contain more awareness than some layer in which E has a section. For each D that is a refinement of some
F ∈ ζ, the D-section of BirE is made up of those types in ΩD that put probability at least r on some section of E.
Formally,

BirE =
⊔
D.F∈ζ

{t ∈ ΩD : ∃F ∈ ζ, gi(t) ∈ ∆(ΩF,−i), gi(t)(EF ) ≥ r} . (4)

In Fig. 3, a belief set for i is Bi1t
′
1 = {t1, t′1} and a (non)belief set for j is Bj1/3t

′
1 = ∅1.

The set in which agent i is aware of E is defined as

AiE =
⊔
D.F∈ζ

{t ∈ ΩD : ∃F ∈ ζ, gi(t) ∈ ∆(ΩF,−i)} . (5)

In Fig. 3, agent i’s awareness sets are for example Ait1 = Ait′1 = {t1, t′1} and one of agent j’s unawareness sets is

(Ajt1)c
′

= t′1.
Events are measurable subsets of Ω that have the form E =

⊔
F.E EF , though not all sets of this form need be

events. The definition of events is inductive. The base case is to take for any measurable set of states of nature
ES ∈ GS the coarsest ES in which ES is measurable and let E =

⊔
F.E EF , where EF = ES × ×i∈IΩF,i. The

inductive step is to let for any events E and F , any i ∈ I and r ∈ [0, 1] the sets Ec
′
, E ∩ F , BirE and AiE also be

events.

2An alternative definition of implication is: E ⊆ F iff ζ ⊆ χ and EE ⊆ FE for each E ∈ ζ. This follows the intuition of the subset

relation. E ⊆ F is not equal to Ec′ ∪′ F , but E ⊆ F ∩ F ⊆ E is the same as E = F . Since ⊆ is weaker than ⊆′, all the results for ⊆′

below continue to hold for ⊆.
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The definition of events is reminiscent of the construction of a language (a syntax) in modal logic. In logic, each
formula is assigned a set of states where it is true after the full language has been defined, while here the semantics
and syntax are created together in the same induction.

3.2. Properties of belief and awareness. This subsection characterizes belief and awareness in type spaces with
unawareness in more detail, without assuming that the sets the operators are applied to are events. Events are a
subclass of the sets considered, so all results continue to hold for events.

Remark 1. Three observations following directly from the definitions of belief and awareness are

(1) AiE = Bi0E = Bir(E ∪′ Ec
′
) = Ai(Ec

′
),

(2) BirE ⊆′ BiqE for all r ≥ q, in particular, BirE ⊆′ AiE ∀r,
(3) BirE ⊆′ (Biq(E

c′))c
′

for r + q > 1.

Awareness is symmetric with respect to negation in this model: AiE = Ai(Ec
′
), therefore unawareness is

also symmetric. Awareness is belief with probability at least zero, which is distinct from belief with probability
exactly zero (i.e. the negation having probability one). Belief with probability exactly zero is not symmetric:

Bi0E ∩Bi1(Ec
′
) 6= Bi0(Ec

′
) ∩Bi1(E).

In the universal type space, the sets AiE and BirE contain a measurable set from each ΩD for which D . F for
some F ∈ ζ, because every layer of the universal space contains a belief over each layer with less awareness. If the
F-section of E is nonempty, then the D-sections of AiE and BirE are also nonempty, because each layer of the
universal space contains all beliefs over layers with weakly less awareness, i.e. layer ΩF contains for any nonempty
set EE with E / F a type putting probability one on EE . Probability one implies probability at least r for any
r ∈ [0, 1] by Remark 1.

Unawareness is nontrivial in this paper, because if E =
⊔
F∈ζ EF and E /∈ ζ, then there exists a type t with

gi(t) ∈ ∆(ΩE,−i) . That type is unaware of set E, so (AiE)c
′

is nonempty. Since ζ must be nonempty, AiE contains
a measurable set from at least one layer of Ω. If E contains at least one nonempty set, then at least one measurable
set in AiE is nonempty. Unlike in Dekel, Lipman, and Rustichini (1998), unawareness is generally neither the whole
space nor the empty set, and the same holds for belief.

Next it is shown that belief with probability one and awareness satisfy the conjunction property—the conjunction
of sets is certain iff both sets are certain and the agent is aware of the conjunction of sets iff he is aware of both.
The proof is purely from the definitions.

Lemma 2. Bi1E ∩Bi1F = Bi1(E ∩ F ) and AiE ∩AiF = Ai(E ∩ F )

Proof. Take E =
⊔
F∈ζ EF , F =

⊔
E∈χ FE . Then

Bi1E ∩Bi1F =
⊔

D.F∈ζ∩χ

({t ∈ ΩD : ∃F ∈ ζ ∩ χ, gi(t)(EF ) ≥ 1} ∩ {t ∈ ΩD : ∃F ∈ ζ ∩ χ, gi(t)(FF ) ≥ 1})

=
⊔

D.F∈ζ∩χ

{t ∈ ΩD : ∃F ∈ ζ ∩ χ, gi(t)(EF ∩ FF ) ≥ 1} = Bi1(E ∩ F )

AiE ∩AiF =
⊔

D.F∈ζ∩χ

({t ∈ ΩD : ∃F ∈ ζ ∩ χ, gi(t) ∈ ∆(ΩF,−i)} ∩ {t ∈ ΩD : ∃F ∈ ζ ∩ χ, gi(t) ∈ ∆(ΩF,−i)})

= Ai(E ∩ F )

�

Belief with probability r ∈ (0, 1) does not satisfy conjunction. An easy counterexample is the uniform distribution
on {a, b, c} which puts probability at least 2

3 on both {a, b} and {b, c}, but not on {b}.
Probabilistic belief does satisfy two conjunction-like properties similar to those given in Samet (2000) and Zhou

(2009). These are

Bir(E ∩ F ) ∩Biq(E ∩ F c
′
) ⊆′ Bir+q(E ∩ (F ∪′ F c

′
)) = Bir+qE ∩AiF, r + q ≤ 1,

AiE ∩AiF ∩
(
Bir(E ∩ F )

)c′ ∩ (Biq(E ∩ F c′))c′ ⊆′ (Bir+qE)c′ , r + q ≤ 1.

Awareness must be added to the original conditions to make all sets consist of sections from the same layers of Ω.
Subsequently only sets of measurable sets of the form E =

⊔
F.E EF are considered, where E can be any coarsening

of G. For sets of the form E =
⊔
F.E EF , define the base space as the coarsest space containing some section of E,

i.e. Ω(E) = ΩE for the E in this paragraph. Applying the belief operator to a set of this form results in another
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set of this form with the same base space, as shown in Lemma 3. The same holds for the awareness operator by
Remark 1, and for negation and conjunction by definition.

Lemma 3. In the universal space with unawareness, if E =
⊔
F.E EF , then BirE =

⊔
F.E(B

i
rE)F for the same E.

Proof. By the definition of BirE in Eq. (4), for each EE ∈ E and F . E , BirE contains a measurable set from each
layer ΩF . In particular, BirE contains a subset of each layer with more awareness than the base space of E. Again
by (4), BirE does not contain a set from any layer ΩD that does not have weakly more awareness than some section
EF ′ of E, i.e. for which D .F ′ fails. So BirE does not contain a subset of any layer that does not have weakly more
awareness than the base space of E. �

Remark 2. If Ω(E) = Ω(F ) = ΩE and EF ⊆ FF ∀F . E , then (BirE)F ⊆ (BirF )F ∀F . E , which is equivalent to
BirE ⊆′ BirF . By Remark 1 and Lemma 3, it follows that BiqB

i
rE ⊆′ BiqBipE for all r ≥ p.

The next proposition captures the positive introspection property—if an agent believes something, then he is
certain that he believes it. This property relies directly on the specific extension of gi to the i-th dimension presented
in subsection 2.2. The extension builds certainty of own belief into the definition of the type function.

Proposition 4. BirE = Bi1B
i
rE ∀i ∀r ∀E

Proof. For the set BirE, only the i-th dimension of a type is important, in the following sense. A type t can
expressed as (ti, t−i). By the definition of the belief operator in (4), the set BirE consists of the types (ti, t−i)
where gi(ti)(E) ≥ r (for this, E must be defined at the awareness level E of ti). The component t−i of the
type is unrestricted, except by the requirement that (ti, t−i) belong to the appropriate layer of the space. So if
(ti, t−i) ∈ BirE, then also (ti, t

′
−i) ∈ BirE for any t′−i from the same layer of the space.

The probability gi(t)(B
i
rE) that i puts on BirE depends only on the marginal δtE,i : if (tE,i, tE,−i) is contained in

BirE for some tE,−i, then the probability is one, otherwise zero. This is formally expressed in the following string
of equivalences, which establishes the result.

gi(ti)(B
i
rE) ≥ 1⇔ (tE,i, tE,−i) ∈ BirE ⇔ gi(tE,i)(E) ≥ r ⇔ gi(ti)(E) ≥ r

The last equivalence comes from the fact that gi(ti) = gi(tE,i). �

From Remark 1 and Proposition 4, AiE = Bi1A
iE and AiE ⊆′ AiAiE follow immediately. The latter impli-

cation is strengthened to equality in the next proposition, which demonstrates that the universal type space with
unawareness satisfies the AU introspection property of Dekel, Lipman, and Rustichini (1998).

Proposition 5. (AiE)c
′

= (Ai(AiE)c
′
)c
′

and AiE = AiAiE = AiBirE.

Proof. It is true that t ∈ (Ai(AiE)c
′
)c
′

iff it is not true that gi(t) ∈ ∆(ΩE,−i) s.t. E . F , where Ω((AiE)c
′
) = ΩF .

By Lemma 3 and Remark 1, Ω((AiE)c
′
) = Ω(AiE) = Ω(E). Therefore t ∈ (Ai(AiE)c

′
)c
′

iff gi(t) /∈ ∆(ΩE,−i) s.t.

E . F , where Ω(E) = ΩF . This is equivalent to t ∈ (AiE)c
′
.

For the second part, t ∈ (AiE)F iff gi(t) ∈ ∆(ΩF ′,−i) for some F ′ . E , where Ω(E) = ΩE . Note that Ω(E) =
Ω(AiE) = Ω(BirE) by Lemma 3, therefore gi(t) ∈ ∆(ΩF ′,−i) iff t ∈ (AiAiE)F iff t ∈ (AiBirE)F . �

Lemma 6 proves the KU introspection property, which similarly to AU introspection comes from Dekel, Lipman,
and Rustichini (1998) and is used in section 4.

Lemma 6. Bi1(AiE)c
′

= ∅.

Proof. By Remark 1 and by Proposition 5, Bi1(AiE)c
′ ⊆′ Ai(AiE)c

′
= AiE. Together, Bi1(AiE)c

′ ⊆′ (AiE)c
′

and

Bi1(AiE)c
′ ⊆′ AiE give Bi1(AiE)c

′
=
⊔
F.E ∅F , where Ω(E) = ΩE . �

The negative introspection property (BirE)c
′ ⊆′ Biq(BirE)c

′
fails for any q ∈ [0, 1], because (BirE)c

′
contains

types that are unaware of E and therefore unaware of (BirE)c
′
. However, it can be shown that conditional on being

aware, negative introspection holds.

Proposition 7. AiE ∩ (BirE)c
′

= Bi1(BirE)c
′

Proof. As in Proposition 4, only the ti dimension of types matters. The result is established by the following
equivalences.

gi(ti)((B
i
rE)c

′
) ≥ 1⇔ (tE,i, tE,−i) ∈ (BirE)c

′
and (tE,i, tE,−i) ∈ AiE ⇔ 0 ≤ gi(tE,i)(E) < r ⇔ 0 ≤ gi(ti)(E) < r.

�
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The next section demonstrates that the desirable properties of unawareness and certainty are satisfied in the
universal type space with unawareness, while unawareness is nontrivial. Therefore the model of this paper escapes
the impossibility result of Dekel, Lipman, and Rustichini (1998).

4. Evading the impossibility result of Dekel, Lipman, and Rustichini (1998)

Every unawareness model must deal with the limitations imposed by the impossibility result that standard state
spaces preclude unawareness. In this section it is shown that the universal type space with unawareness is not a
standard state space model according to the definition of Dekel, Lipman, and Rustichini and permits nontrivial
unawareness. First, an overview of the impossibility result is in order.

4.1. Overview of Dekel, Lipman, and Rustichini (1998). There is a knowledge operator K and an unaware-
ness operator U on a state space Ω. The model has a single agent. The axioms described below are imposed on a
state space model and the following theorem is proved.

A1 (necessitation) KΩ = Ω
A2 (monotonicity) E ⊆ F implies KE ⊆ KF
A4 (plausibility): UE ⊆ (KE)c ∩ (K(KE)c)c

A5 (KU introspection): KUE = ∅
A6 (AU introspection): UE ⊆ UUE. Equivalently AUE ⊆ AE, where AE = (UE)c is the awareness operator.

Theorem 8 (Theorem 1 of Dekel, Lipman, and Rustichini). A4-A6, A1 imply UE = ∅ (never unaware).
A4-A6, A2 imply UE ⊆ (KF )c (unawareness means no knowledge of anything).

Proof. UE ⊆ UUE ⊆ (K(KUE)c)c = (KΩ)c. A1 is KΩ = Ω, A2 implies (KΩ)c ⊆ (KF )c. �

The preceding theorem applies to set-based models, but using a propositional model does not necessarily permit
nontrivial unawareness, as the next theorem shows. The notation for a propositional model uses formulas φ, ψ,
and redefines the knowledge and unawareness operators to map formulas to formulas. There are logic operators
negation ¬ and disjunction ∨ (corresponding to complement and union) also taking formulas to formulas. The
function ‖ · ‖ : G → 2Ω gives for each formula φ the set of states in which φ is true. The additional axioms on
propositional models are as follows.

A7 (real states): ‖φ‖ = Ω \ ‖¬φ‖, ‖φ ∨ ¬φ‖ = Ω
A8 (event sufficiency): ‖φ‖ = ‖ψ‖ implies ‖Kφ‖ = ‖Kψ‖ and ‖Uφ‖ = ‖Uψ‖
A9 (weak necessitation): ‖¬Uφ‖ ⊆ ‖K(φ ∨ ¬φ)‖, equivalently (UE)c ⊆ KΩ.
Under A7 and A8, a propositional model can be expressed as a standard state space model by setting KE = ‖Kφ‖

and UE = ‖Uφ‖ for any φ with ‖φ‖ = E, so Theorem 8 applies. The following theorem uses slightly weaker axioms
than Theorem 8 and proves a similar result.

Theorem 9 (Theorem 2 of Dekel, Lipman, and Rustichini). A4-A9 imply UE = UF ⊆ (KG)c.

Proof. By Theorem 8, UE ⊆ (KΩ)c. A9 gives (KΩ)c ⊆ UF , so UE ⊆ UF . A4 gives UG ⊆ (KG)c. �

The next subsection shows that the universal type space with unawareness satisfies the properties of knowledge
and unawareness considered natural in Dekel, Lipman, and Rustichini (1998), while describing nontrivial unaware-
ness.

4.2. Connection to type spaces with unawareness. To discuss the theorems of Dekel, Lipman, and Rustichini
(1998) in the model of this paper, pick any agent i and take knowledge to mean i’s belief with probability one,

KE = Bi1E. Complementation c in the preceding subsection will correspond to negation c′ in the universal space.

Unawareness is the negation of awareness for that agent, UE = (AiE)c
′
. There are two possible interpretations

of Dekel, Lipman, and Rustichini’s state space Ω in a type space with unawareness—the whole type space Ω or a
collection {ΩF : F . E} for some E . Necessitation holds under the first interpretation, but not necessarily under the
second, since for D / E , types in ΩD do not form beliefs about any ΩF with F . E .

Monotonicity holds in type spaces with unawareness, because a given type needs weakly more awareness to reason
about E ⊆′ F than about F and puts weakly less probability on E. If E has probability one for a type, then the
type is aware of F and puts probability one on F .

The first part of plausibility, (AiE)c
′ ⊆′ (Bi1E)c

′
, follows from Equations (4) and (5) defining belief and awareness.

The second part, (AiE)c
′ ⊆′ (Bi1(Bi1E)c

′
)c
′
, is implied by Proposition 7. The KU introspection property is exactly

Lemma 6 in subsection 3. AU introspection follows from Proposition 5, which actually gives equality instead of a
subset relation.
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The crucial property of the universal type space with unawareness is the failure of the real states axiom of Dekel,
Lipman, and Rustichini (1998)—the negation of an event is generally not equal to the complement of the event, and

tautologies E ∩ Ec′ that use the nonstandard negation do not equal the whole Ω. Since the belief and awareness
operators in the universal space are set-based, they satisfy the event sufficiency axiom.

Weak necessitation is implied by necessitation, so it holds under the interpretation that equates Dekel, Lipman,
and Rustichini’s state space with the whole type space. Under the interpretation that makes the state space
correspond to {ΩF : F . E} for some E , weak necessitation may hold, even though necessitation fails. It depends
on the particular E chosen. The natural choice, based on the ‖¬Uφ‖ ⊆ ‖K(φ ∨ ¬φ)‖ version of weak necessitation,
is to set E equal to the base space of the event considered, i.e. to write the second version of weak necessitation as

(UE)
c′ ⊆′ K(E ∪′ Ec′). This makes weak necessitation hold.

The properties of knowledge and unawareness that Dekel, Lipman, and Rustichini considered desirable (plausi-
bility, KU introspection and AU introspection) are satisfied in the model of this paper. Of the additional properties
they considered, monotonicity and event sufficiency hold unconditionally, while necessitation and weak necessita-
tion hold under some interpretations, but not others. The impossibility theorems of Dekel, Lipman, and Rustichini
(1998) fail due to the failure of the real states assumption—as was argued in section 3, unawareness and belief are
nontrivial.

5. Other kinds of unawareness

Unawareness in the universal type space does not have to be propositionally generated, as in the preceding
sections. The same proof of existence and characterization of events, and similar properties of belief and awareness
hold if the awareness levels are subsets J of the finite set I of agents. In that case, an agent could reason only about
the agents he is aware of, their reasoning about the agents he is aware of etc.

Bounded reasoning in the style of Kets (2010) can be expressed as unawareness of higher-order reasoning by
taking the awareness levels to be 1 ≤ k ≤ ∞. An agent with awareness k can reason about order k − 1 and lower
order beliefs of other agents, their reasoning about order k − 2 and lower orders etc. The special case of infinite
depth of reasoning is taken care of by assuming ∞− 1 =∞.

The proof of existence of the universal space in Viglizzo (2005) and Moss and Viglizzo (2006) only deals with a
finite number of agents, and mathematically the fixed set of awareness levels in this paper behaves like the set of
agents. With unawareness of higher-order reasoning, the set of awareness levels is countably infinite. However, since
all the proofs of Moss and Viglizzo (2006) use measurable spaces and the assumption about a finite number of agents
is only used to make showing measurability easier, the proofs work with a countable number of awareness levels
as well.3 The events and the belief and awareness operators have a similar structure to section 3 if the awareness
levels are orders of reasoning.

If the existence result holds for several kinds of unawareness, it also holds for their combination, with only
notational changes in the proof. Type spaces with three kinds of unawareness consist of measurable spaces MF,J,k,i
one for each agent i and awareness level (F , J, k). The triple consists of a σ-algebra F / G on the states of nature,
a set of agents J ⊆ I and an order of reasoning k. Each type in MF,J,k,i can reason only about the agents in J and
propositions in F , and the reasoning can extend only up to order k.

The definitions of type spaces with different kinds of unawareness are given next, followed by the proof of the
existence of the universal type space for all of them.

Definition 4. A type space with unawareness of agents is (M, g) =
(
M0, (MJ,i)

i∈J
J⊆I , g0, (gJ,i)

i∈J
J⊆I

)
such that

(i) MJ,i is a measurable space for each J and i, and M0 = SG ,
(ii) for each J and i, the type function gJ,i : MJ,i →

⊔
i∈J′⊆J ∆

(
M0 ××j∈J′\{i}MJ′,j

)
is measurable,

(iii) the state of nature function g0 : M0 → SG is the identity.

The dimension of the type morphism must be modified to capture the different number of components of a type
space with unawareness of agents, but the definition remains basically the same. The definition of the universal
type space is the same for all kinds of unawareness—it is the space that has a unique type morphism from every
type space with the same kind of unawareness into it. The existence of the universal type space for all kinds of
unawareness in this section is given in Theorem 10. Before stating the theorem, type spaces are defined for the
remaining kinds of unawareness considered in this paper.

Definition 5. A type space with unawareness of higher-order reasoning is

(M, g) =
(
M0, (Mk,i)

i∈I
1≤k≤∞, g0, (gk,i)

i∈I
1≤k≤∞

)
3This was confirmed by Larry Moss in a private communication.



12 SANDER HEINSALU

such that

(i) Mk,i is a measurable space for each k and i, and M0 = SG ,
(ii) for each 1 ≤ k ≤ ∞ and i, the type function gk,i : Mk,i →

⊔
n≤k−1 ∆

(
M0 ××j∈I\{i}Mn,j

)
is measurable,

where M0,i is a singleton,
(iii) the state of nature function g0 : M0 → SG is the identity.

Definition 6. A type space with three kinds of unawareness is

(M, g) =

((
MF,0, (MF,J,k,i)

i∈J⊆I
1≤k≤∞

)
F/G

,
(
gF,0, (gF,J,k,i)

i∈J⊆I
1≤k≤∞

)
F/G

)
such that

(i) MF,J,k,i is a measurable space for each F , J , k and i, and MF,0 = SF for each F ,
(ii) for each F , J , k ≥ 1 and i, the type function

gF,J,k,i : MF,J,k,i →
⊔
E/F

i∈J′⊆J
n≤k−1

∆
(
ME,0 ××j∈J′\{i}ME,J′,n,j

)

is measurable, with ME,J′,0,i a singleton,
(iii) for each F , the state of nature function gF,0 : MF,0 → SF is the identity.

Theorem 10. For fixed sets of states of nature, agents and awareness levels, there exists a universal type space
with unawareness of agents (Ωa, ga), a universal type space with unawareness of higher-order reasoning (Ωb, gb)
and a universal type space with three kinds of unawareness (Ωc, gc). All universal type spaces are unique up to
isomorphism. The type functions in the universal type spaces are isomorphisms.

The proof in the appendix is very similar to Theorem 1. It also translates the problem to category theory and
uses the results of Viglizzo (2005).

In the next section, I consider the case where the set of states of nature is a Polish space. This additional
assumption allows a different construction of the universal type space that is more common in the literature
(Mertens and Zamir, 1985; Brandenburger and Dekel, 1993; Heifetz, Meier, and Schipper, 2011b).

6. The topological case

Previously, the only assumption on the set of states of nature was that they form a measurable space. All
probability measures over S were allowed as beliefs, all probability measures over these as beliefs about beliefs,
etc. This permitted a construction of the universal type space as all hierarchies that some type in some type space
maps to. Before Heifetz and Samet (1998b), the proofs of the existence of the universal type space used topological
assumptions and applied the Kolmogorov consistency theorem to show that the set of all consistent hierarchies
constituted the universal type space. For this proof, the states of nature need to have a topology and the set of
beliefs must be the set Borel probability measures with the topology of weak convergence.

In this subsection, the older method is used to prove the existence of universal type spaces for the kinds of
unawareness considered in this paper. First, the definitions of type spaces and type morphisms are modified to
incorporate topological assumptions.

Let S be a Polish space (a complete separable metric space) with the Borel σ-algebra generated by the open sets
of the topology induced by the metric. For any Polish space M , let ∆(M) denote the set of all Borel probability
measures on M , with the σ-algebra on ∆(M) generated by

{βq(E) : E ∈ GM , q ∈ [0, 1]} , where βq(E) = {µ ∈ ∆(M) : µ(E) ≥ q} .

The rest of the notation from section 2 has the same meaning as previously. The definitions of type spaces and
type morphisms now require all spaces to be Polish and measurable with the Borel σ-algebra. All functions in the
definitions are required to be continuous and measurable. All other aspects of the definitions remain the same as
in sections 2 and 5. The following theorem establishes that for the kinds of unawareness examined in this paper,
the set of all coherent hierarchies forms the universal type space.

Theorem 11. For a Polish space of states of nature, a countable set of agents and awareness levels, there exist
universal type spaces with propositional unawareness, unawareness of agents, unawareness of higher-order reasoning
and with three kinds of unawareness. All universal type spaces are unique up to isomorphism. The type functions
in the universal type spaces are isomorphisms.
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For the case of propositional unawareness, the proof is in Heifetz, Meier, and Schipper (2011b). The proofs for
the other kinds of unawareness use the general theorem of Schubert (2008) and are presented in the appendix.

The mechanism by which the universal type space of the present paper achieves nontrivial unawareness is the
same as in Heifetz, Meier, and Schipper (2006, 2011b), so it is useful to compare the approaches. The next subsection
gives an overview of Heifetz, Meier, and Schipper’s model and compares it to the universal space with unawareness.

6.1. Comparison to Heifetz, Meier, and Schipper (2011b). The universal type space with propositional
unawareness in Heifetz, Meier, and Schipper (2011b) is based on topological spaces and uses the Kolmogorov
extension theorem. The construction starts from a complete lattice of spaces of states of nature, which corresponds
to the present paper’s lattice of σ-algebras on the states of nature. Both will be denoted (SF )F/G . The notation
differs from Heifetz, Meier, and Schipper in many respects, in order to use the same symbols for corresponding
objects and different symbols for different objects.

The hierarchical construction of Heifetz, Meier, and Schipper sets Y 0
F,i = SF and defines the first order beliefs

of player i as Q1
F,i = ∆(Y 0

F,i), the space of regular Borel probability measures on Y 0
F,i endowed with the topology

of weak convergence. Inductively, the domain of (k + 1)-order beliefs is Y kF,i = SF ××j 6=i
(⊔
E/F Q

k
E,j
)

and the set

of consistent (k + 1)-order beliefs is

Qk+1
F,i =

{
(µ1, . . . , µk+1) ∈ QkF,i ×∆

(
Y kF,i

)
: mrgY k−1

F,i
µk+1 = µk

}
.

In the limit, define QF,i =
{

(µ1, µ2, . . .) : (µ1, . . . , µk) ∈ QkF,i ∀k
}

and YF,i = SF × ×j 6=i (
⊔
E/F QE,j). The belief

function of agent i at awareness F is τF,i : QF,i → ∆ (YF,i). The full type space is (YF )F/G , where YF =
SF × ×i∈I (

⊔
E/F QE,i). The belief function is redefined to τi : YF →

⊔
E/F ∆ (YE), but it still depends only on

the i-th coordinate of YF . Beliefs are extended from YF,i to YF by imposing certainty of own belief (taking the
Cartesian product with the Dirac δ-function on own type), similarly to subsection 2.2 of the present paper.

Starting from the same states of nature, agents and awareness levels, the full type space (YF )F/G of Heifetz,
Meier, and Schipper equals (ΩF )F/G in the topological part of the present paper. The type function τi maps each
element of YF to ∆ (YE) for some E /F , just like gi maps ΩF to

⊔
E/F ∆ (ΩE). Therefore the category of type spaces

with unawareness is the same the present paper as in Heifetz, Meier, and Schipper (2011b). This is not surprising,
since both papers extend Heifetz, Meier, and Schipper (2006) by incorporating beliefs.

In more detail, YF,i = SF ××j 6=iΩF,j = ΩF,−i and ΩF,j =
⊔
E/F QE,j . Also, QE,j is homeomorphic to ∆ (YE,j)

via tE,j , so we can illustrate the relationship between Y , Ω and Q loosely in the following diagram.

Ω Y

Q

×

∆
⊔

If the functions τi and gi were added to the triangular diagram, they would map an object to another object that
is three steps ahead in the direction of the arrows. To show this, the triangle is unpacked in the diagram below.⊔

E/F QE,i = ΩF,i YF,i = ×j 6=iΩF,i ∆ (YF,i)

QF,i
⊔
E/F ∆ (×j 6=iΩE,j)

⊔
× ∆

⊔
τF,igF,i

Heifetz, Meier, and Schipper (2007, 2011b) define projections between layers of the type space and impose
conditions relating projections to type functions. To compare their model to the present paper, projections must
be defined in type spaces with unawareness. For that, nonredundancy of types is needed, i.e. t 6= t′ must imply
that gi(t) 6= gi(t

′) for at least one i ∈ I0. The universal type space satisfies nonredundancy by construction, for
other type spaces in this subsection it is assumed.

Nonredundancy is equivalent to the condition that if t 6= t′, then there exists an event F with t ∈ F and t′ /∈ F . If
g0(t) 6= g0(t′), then there is a σ-algebra F on S and an ES ∈ F such that t ∈ ES××i∈IMF,i and t′ /∈ ES××i∈IMF,i.
If gi(t) 6= gi(t

′) for i 6= 0, then gi(t)(E) ≥ r and gi(t
′)(E) < r for some E ∈ F and r ∈ [0, 1]. This means t ∈ BirE

and t′ /∈ BirE.
The definition of projections starts from inverse projections of types. For t ∈ ΩE and any F . E , define

(ρFE )−1t = {t′ ∈ ΩF : t ∈ E ⇒ t′ ∈ E for all events E} .
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Inverse projections commute because implications commute: if t ∈ E ⇒ t′ ∈ E and t′ ∈ E ⇒ t′′ ∈ E, then
t ∈ E ⇒ t′′ ∈ E.

If an event is not defined in ΩE , then the implication in the definition trivially holds, so we can restate the
definition using only events defined at ΩE . For these events, the implication is actually an equivalence: if t is in a
layer where E is defined, but not in E, then t is in the negation of E. By the definition, t′ ∈ (ρFE )−1t is then also
in the negation of E. Therefore t /∈ E ⇒ t′ /∈ E.

For all t′ ∈ (ρFE )−1t, let the projection of t′ into ΩE be ρFE t
′ = t. It must be shown that this is a well-defined

surjective measurable function. It is surjective because inverse projection was defined at every type.
By nonredundancy, ρFE is a function: for t 6= t′′, there exists an event E such that t ∈ E and t′′ ∈ Ec′ . Since

E and Ec
′

are disjoint and by definition (ρFE )−1t ∈ E and (ρFE )−1t′′ ∈ Ec′ , the inverse projections of t and t′′ are
disjoint. So there is no t′ that projects to more than one type in a lower awareness level.

To show measurability, take an event E defined at ΩE and the inverse projection of its E-section (ρFE )−1EE =
∪t∈EE {t′ ∈ ΩF : t ∈ F ⇒ t′ ∈ F}. It will be shown that

(ρFE )−1EE = EF , (6)

which demonstrates that the inverse of ρFE takes measurable sets to measurable sets. If t ∈ EE , then by definition

(ρFE )−1t ⊆ EF , so ∪t∈EE (ρFE )−1t ⊆ EF . If on the other hand t /∈ EE , then again by definition (ρFE )−1t ⊆ Ec
′

F , so
(ρFE )−1t ∩ EF = ∅ and therefore ∪t∈EE (ρFE )−1t ⊇ EF .

Projection is well-defined, because the previous paragraph implies (ρFE )−1ΩE = ΩF , which means that for each
t′ ∈ ΩF there exists t ∈ ΩE such that t′ ∈ (ρFE )−1t.

An alternative definition of projection takes for t′ ∈ ΩF and any E /F the intersection of all events containing t′

that are defined at ΩE , formally ρFE t
′ = ∩t′∈E, Ω(E)/EEE . The equivalence of this to the above definition based on

inverse projections can be shown as follows. If t′ is in F and F is defined at ΩE , then ∩t′∈E, Ω(E)/EEE ⊆ FE . This

implication is actually an equivalence, because if t′ is not in F and F is defined at ΩE , then t′ ∈ F c′ , which implies
∩t′∈E, Ω(E)/EEE ⊆ F c

′

E , i.e. ∩t′∈E, Ω(E)/EEE ∩ FE = ∅. Therefore any event defined at ΩE contains t′ iff it contains
its projection to ΩE . This matches the first definition of projection.

With projections defined, the conditions imposed on the type space in Heifetz, Meier, and Schipper (2007) can
finally be stated and shown to hold in the present paper. The conditions are

0) gi(tF ) ∈ ∆(ΩE) for some E / F ,
1) If D / E / F , t ∈ ΩF and gi(t) ∈ ∆(ΩD), then gi(ρ

F
E t)(·) = gi(t)(·),

2) If D / E / F , t ∈ ΩF and gi(t) ∈ ∆(ΩE), then gi(ρ
F
Dt)(·) = gi(t)

(
(ρED)−1(·)

)
,

3) If D / E / F , t ∈ ΩF and gi(ρ
F
E t) ∈ ∆(ΩD), then gi(t) ∈ ∆(ΩE′) for some E ′ .D.

Conditions 1, 2 and 3 require the following diagrams to commute. In the diagrams, ΩF |E denotes the subset of ΩF
that gi maps to ΩE . The function ∆(ρED) maps µE ∈ ∆(ΩE) to µD ∈ ∆(ΩD) such that µD(E) = µE((ρ

E
D)−1(E)).

The symbol . at the dotted arrow means E ′ .D.

ΩF |D ΩF |E ∆(ΩE) ΩF |E′ ∆(ΩE′)

ΩE |D ∆(ΩD) ΩD|D ∆(ΩD) ΩE |D ∆(ΩD)

ρFE

gF,i

gE,i

ρFD ∆(ρED)

gF,i

gD,i

ρFE .

gF,i

gE,i

Condition 0 holds automatically by the definition of a type space with unawareness, while condition 1 is implied
by 0, 2 and 3 according to Heifetz, Meier, and Schipper (2011b), so only the last two must be proved.

Let gi(ρ
F
E t) ∈ ∆(ΩD) and gi(t) ∈ ∆(ΩE′). If E ′ . D fails, then ρFE t ∈ AiE and t /∈ AiE for some E defined at

ΩD, but not at ΩE′ , so ρFE t fails the definition of projection. Therefore condition 3 must hold with the projections
constructed above.

For condition 2, by definition of the projection operator, gi(t)(EE) = gi(ρ
F
Dt)(ED′) for all events E defined at

both ΩE and ΩD′ , where gi(t) ∈ ∆(ΩE) and gi(ρ
F
Dt) ∈ ∆(ΩD′). As shown in Eq. (6), (ρED′)

−1ED′ = EE , therefore
gi(t)

(
(ρED′)

−1(·)
)

= gi(ρ
F
Dt)(·). To show that D′ = D, take E =

⊔
E′.D EE′ , which implies AiE =

⊔
E′.D(AiE)E′

and t ∈ AiE. Then ρFDt is in ∩t∈FF , Ω(F )/F ⊆ AiE by the second definition of projection. From this, gi(ρ
F
Dt) is in

∆(ΩD), not in a strictly lower layer.
A similar proof works for condition 1. In this case, if t ∈ ΩF and gi(t) ∈ ∆(ΩD), then in the universal type space

there is a t′ ∈ ΩE with gi(t) = gi(t
′), so t and t′ have the same awareness and belief. By definition of projection,

ρFE must take t to t′, since only in that case do t and t′ belong to the same events.
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The category of objects used in the current section is the same as in Heifetz, Meier, and Schipper (2011b). Due
to this, the type functions and projections in both papers satisfy the same conditions. The similarity is driven by
the common origin of the models—both modify Heifetz, Meier, and Schipper (2006).

7. Conclusion and potential extensions

This paper proved the existence of the universal type space with three kinds of unawareness, both in the purely
measurable and in the topological case. The construction fixes the set of awareness levels, states of nature, and
players. The universal space for all conceivable kinds of unawareness is unlikely to exist, due to similar cardinality
considerations as in the possibility structures of Heifetz and Samet (1998a); Meier (2005). For the same reason,
there is no universal type space that embeds type spaces over all possible spaces of states of nature or type spaces
with all sets of players.

Unawareness of players was added to a set-based model, which appears to be new in the literature. Using several
kinds of unawareness together also seems to be an innovation. One of these kinds of unawareness is a reinterpretation
of the bounded reasoning in Kets (2010), so the present paper extends Kets (2010) to purely measurable spaces.

The most interesting extension of this paper would be to add quantification to the model, enabling the agents to
express belief in the existence of unawareness without knowing exactly what they are unaware of. Quantification has
been added to the logic of knowledge and awareness by Halpern and Rêgo (2009), so in the modal logic framework
the universal type space with quantification and unawareness would combine one of these with Meier (2001) or Zhou
(2009). In a set-based model quantification is difficult to express, since it is similar to conjunction of all events in a
given class, but conjunction is a separate operator with a different interpretation. With an uncountable number of
events, it is difficult to make arbitrary conjunctions of events measurable, so adding quantification to a model with
probabilities is technically complex.

In games with unawareness, agents must believe in the existence of unawareness in order to generate novel
predictions about behavior. Agents unaware of their unawareness act as if they were in a smaller game. Combining
their behavior into a solution concept may be challenging, but from an agent’s viewpoint the game is standard.
For this reason, universal type spaces with self-aware unawareness, i.e. with quantification added to the model, are
desirable.

Universal spaces of preference hierarchies along the lines of Epstein and Wang (1996); Bergemann, Morris,
and Takahashi (2011); Gül and Pesendorfer (2010) can be constructed using the methods of this paper, since the
preference spaces closely resemble belief spaces. A slight modification of the main theorem of Viglizzo (2005) can
be used to prove the existence of a universal space for purely measurable utility functions, and an extension of
Doberkat and Schubert (2011) will give the result in the Polish space framework.

Unawareness can be added to preference type spaces the same way as it has been added to universal belief type
spaces in this paper. Preference spaces with unawareness provide the same foundation for games with unawareness
as the preference spaces in the literature provide for standard games. Applications include axiomatizing solution
concepts, distinguishing strategic generosity from true generosity and studying strategic distinguishability in games
with unawareness.

The universal type space with unawareness was constructed as a set-based model. An equivalent formulation
would use modal logic, replacing events with formulas. The logic for probability and awareness would be a com-
bination of the logic of awareness of Fagin and Halpern (1988) or Heifetz, Meier, and Schipper (2008) and the
probability logic of Meier (2001) or Zhou (2009). Expressing the above results in a propositional notation would
mostly be a matter of switching symbols.

Appendix A. Proofs

To prove the existence of a universal type space with unawareness using Viglizzo (2005), the problem is restated
in category-theoretic terms, as in Moss (2011). The following concepts from category theory are needed.

A category is a directed graph consisting of objects (nodes) and morphisms (arrows). In this paper, only the
category MeasN×I0 , consisting of vectors of measurable spaces as objects and vectors of measurable functions as
morphisms, is needed. I0 is the set of agents together with nature and N is the cardinality of the set of awareness
levels. A functor V : MeasN×I0 → MeasN×I0 maps each object M ∈ MeasN×I0 to an object V (M) ∈ MeasN×I0 and
each morphism f : M ′ → M to a morphism V (f) : V (M ′) → V (M), preserving compositions of morphisms, so
V (f ◦ g) = V (f) ◦ V (g).

A coalgebra (M, g) for a functor V : MeasN×I0 → MeasN×I0 is a vector of measurable spaces M and a vector of
measurable functions g : M → V (M). A coalgebra morphism from (M ′, g′) to (M, g) is a morphism f : M ′ → M
that satisfies g ◦ f = V (f) ◦ g′, as illustrated in the following diagram.
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M ′ V (M ′)

M V (M)

g′

V (f)f

g

A final coalgebra for V is one that has a unique coalgebra morphism from all coalgebras of V into it. The
type spaces of Heifetz and Samet (1998b) are coalgebras for the functor W : MeasI → MeasI , defined as W (M) =
(∆(S ×M−i))i∈I , and the universal type space is a final coalgebra of W (Moss, 2011).

The next two lemmas characterize the type spaces with propositional unawareness as coalgebras of a certain
functors in MeasN×I0 . The proof of Theorem 1 follows.

Lemma 12. A type space with propositional unawareness and awareness levels {Fn : n ∈ N} is a coalgebra for the

functor V : MeasN×I0 → MeasN×I0 defined as V = (VF,i)
i∈I0
F/G, where for i ∈ I, VF,i(M) =

⊔
E/F ∆(ME,−i) and

VF,0(M) = SF .

Proof. By Definition 1, a type space with awareness is an (object, morphism) pair (M, g) in MeasN×I0 , where the

morphism g maps the object M to another object V (M) =
(
SF , (

⊔
E/F ∆(ME,−i))

i∈I
)
F/G

in MeasN×I0 . So g maps

M to its image under the functor V . Therefore (M, g) is a coalgebra for the functor. �

Lemma 13. Coalgebra morphisms are type morphisms. Final coalgebras are universal type spaces.

In the Polish space framework and without unawareness, this result is (Pintér, 2010, Corollary 2.8). The proof
in the measurable space framework and with awareness does not differ significantly, but is presented below for
completeness.

Proof. Coalgebra morphisms in MeasN×I0 and type morphisms are vectors of measurable functions. A coalgebra
morphism f : M ′ →M for the functor V satisfies g◦f = V (f)◦g′, meaning that for each t′ ∈M ′, the same element
of V (M) results from applying g ◦ f as from V (f) ◦ g′. This is exactly Eq. (3) in Definition 2.

By Lemma 12, type spaces are coalgebras for functors of the form V (M) =
(
SF , (

⊔
E/F ∆(ME,−i))

i∈I
)
F/G

. The

definition of a universal type space is that there exists a unique type morphism from any type space into it, and the
definition of a final coalgebra is that there exists a unique coalgebra morphism from any coalgebra into it. Since
type morphisms are coalgebra morphisms, universal type spaces are final coalgebras. �

Proof of Theorem 1. According to Viglizzo (2005, Theorem 7.1), any functor on MeasI composed of ∆, Cartesian
products, disjoint unions, the identity, constant functors and projections from MeasI to Meas has a final coalgebra.
Viglizzo’s proof remains unchanged if the functor is on MeasN×I0 and projections from MeasN×I0 to Meas are used,
where I0 and N are countable. Since the functor in Lemma 12 satisfies the conditions, there exists a final coalgebra
for it, which by Lemma 13 is the universal type space.

Suppose there are two final coalgebras (Ω, g) and (Ω′, g′). There is a unique morphism from any coalgebra to
(Ω, g) and to (Ω′, g′), in particular the morphisms f : Ω → Ω′, f ′ : Ω′ → Ω, idΩ : Ω → Ω and idΩ′ : Ω′ → Ω′

are unique. Then f ′ ◦ f = idΩ and f ◦ f ′ = idΩ′ by uniqueness, so f = (f ′)−1 is an isomorphism. Any two final
coalgebras are isomorphic.

By Viglizzo (2005, Theorem 2.3), the morphism g in a final coalgebra is an isomorphism. This result in the
Polish space framework is (Pintér, 2010, Corollary 2.9). �
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Similarly to Lemma 12, it can be shown that type spaces with unawareness of agents, unawareness of higher-order
reasoning and three kinds of unawareness are coalgebras of the following functors V a, V b and V c respectively.

V a(M) =

S,
 ⊔
i∈J′⊆J

∆
(
M0 ××j∈J′\{i}MJ′,j

)i∈J

J⊆I


V b(M) =

S,
 ⊔
n≤k−1

∆
(
M0 ××j∈I\{i}Mn,j

)i∈I

1≤k≤∞

 (7)

V c(M) =

SF ,


⊔
E/F

i∈J′⊆J
n≤k−1

∆
(
ME,0 ××j∈J′\{i}ME,J′,n,j

)

i∈J⊆I

1≤k≤∞


F/G

Repeating the proof Lemma 13, it is clear that type morphisms for the different kinds of unawareness considered
in section 5 are coalgebra morphisms of the appropriate functors. The proof of Theorem 10 then follows along
similar lines to Theorem 1.

Proof of Theorem 10. The functors V a, V b and V c all satisfy the conditions of Theorem 7.1 of Viglizzo (2005), if
the statement of that theorem is extended to countable products and disjoint unions. This can be done, keeping
the same proof, since the operations are on measurable spaces. Therefore there exist final coalgebras for V a, V b

and V c, which are the universal type spaces for unawareness of agents, unawareness of higher order reasoning, and
three kinds of unawareness.

The uniqueness proof is the same as in Theorem 1. The morphisms in final coalgebras are isomorphisms, as
argued in Theorem 1. �

Proof of Theorem 11. Theorem 3 of Schubert (2008) proves that for every functor in the class that contains the
subprobability functor, the identity, and the constant functor for every Polish space and is closed under countable
products, countable disjoint unions and compositions, there exists a final coalgebra. Section 5.6.1 of Doberkat and
Schubert (2011) argues that the subprobability functor in Schubert (2008) can be replaced by the functor mapping
each Polish space to the set of all Borel probability measures on it. The proof of Schubert can be extended to the
category of vectors of measurable spaces, as in Theorem 7.1 of Viglizzo (2005).

The construction in Theorem 3 of Schubert (2008) relies on the Kolmogorov consistency theorem, restated in
category-theoretic terms as Theorem 1 of Schubert (2008). It uses an inverse system of Polish measurable spaces with
surjective measurable functions between them. For the purposes of this paper, the sequence of Polish measurable
spaces can be the one obtained by repeatedly applying the functors in Lemma 12 or Eq. (7) to a singleton, and
the surjective measurable functions can be the marginals. A consistent hierarchy of probability measures on the
inverse system is a probability measure on the projective limit of the system, i.e. the hierarchy closes, encapsulating
also the reasoning about the hierarchies. A consistent hierarchy of probability measures is one that satisfies the
marginal condition familiar from the literature on universal type spaces (Mertens and Zamir, 1985; Brandenburger
and Dekel, 1993). The proof of Theorem 3 of Schubert (2008) thus uses the same technique as these papers and
extends their results.

Taking ∆ to mean the set of all Borel probability measures, the functors in Lemma 12 and (7) fall into the class
considered in Schubert (2008). These functors must therefore have final coalgebras. The final coalgebras are the
universal type spaces by reasoning similar to Lemma 13.

The proofs that the universal type space is unique and that the morphism in it is an isomorphism are the same
as in Theorem 1. �
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