Laineoptika
Newtoni rõngad
Fermat' printsiibi laineinterpretatsioon
Young'i katse
Fresnel'i katsed
Koherentsete allikate mõiste
Interferents tehnikas
Samakalde interferents
Samapaksuse interferents
Valguse difraktsioon
Fresnel'i tsoonid
Huygens'i-Fresnel'i printsiip
Cronu' spiraal
Fraunhoferi difraktsioon
Difraktsioonivõre
Keralaine difraktsioon
Tsooniplaat ja Fresnel'i läätsed
Mikroskoobi ja teleskoobi piirlahutusvõime
Difraktsioon ruumilistelt tõketelt
Hologramm
Loeng 18. Laineoptika
Üht neist - valguskiirte sõltumatust - mainisime eelmises loengus. Mis mainimata jäi, oli see, et Huygensit ärgitas laineoptika loomisele nähtus, mida peeti (peetakse tänini!) üheks optika suuremaks mõistatuseks - valguse kaksikmurdumine. |
Huygens lõi laineoptika eesmärgiga seletada valguse kaksikmurdumist: erinevas suunas levivate ristvõnkumiste levimiskiirused on erinevad. | ||||||
Nähtuse avastas E. Bartholinus 1670. aastal. Täpselt nii Huygens arutleski. Oletame, et sellisele ebatavalisele ainele langeb "tavaline" valgus - kindla suunaga ristvõnkumine. |
![]() Islandi pagu | ||||||
Osakesed hakkavad võnkuma, kuid selle võnkumise ülekandumine
järgmistele osakestele sõltub võnkesuunast:
|
| ||||||
Paraku on see üksnes kaudne seletus. Laineteooria kriitiline eksperiment - experimentum crucis - on ikkagi interferents, lainete liitumine faasinihet arvestavalt. Kuni seda näidata ei õnnestunud, ei saanud laineteooriat usaldada.
Rõngaste olemasolu polnud korpuskulaarteoorias seletatav; seetõttu tuli Newton välja mõttega, et liikuvad korpusklid tekitavad keskkonnas (eetris) võnkumisi, mis omakorda mõjutavad keskkonna optilisi omadusi. Hinnates rõngaste läbimõõtude järgi läätse ja aluspinna vahelise seisevlaine pikkust, sai Newton üsna tänapäevase tulemuse - pool mikromeetrit. |
![]() Newtoni rõngad. | ||||||
Lähenemisviis meenutab mingil määral kvantmehaanika selgitustes esinevat nn. pilootlaine hüpoteesi. Sellest võib järeldada, et Newton siiski tunnistas võimalust, et valgusel on ka laineomadused. Tänapäeval nimetatakse sellist "kahesust" valguse dualismiks. |
| ||||||
Asi muutub, kui me valguskiirte või korpusklite voo asemel kujutleme murdvale pinnale langevat tasalainet. Siis tähendab eri teid mööda tulevate kiirte hilinemine automaatselt faasi erinevust. Kõige väiksem erinevus naaberkiirte vahel tuleb ekstreemumi (miinimumi) lähedal, kus teeloleku aeg muutub aeglasemalt. See, umbes poolemillimeetrilise laiusega ribale langev valgus moodustab suurema osa intensiivsusest punktis![]() Sama pilt tuleks ka peegeldumisel, aga tol pole mingeid eeliseid "põrkuvate korpusklitega" võrreldes. Seepärast loeme olulisemaks just ülaltoodud mõttekäiku. |
![]() Fermat' printsiip: Fermat' printsiipi saab seletada erinevat teed pidi tulnud valguslainete vahelisest faasinihkest tingitud interferentsiga. | ||||||
Young'i katseskeem on lihtne:
See "lihtne arvutus" on aga järgmine: leiame kõigepealt Pythagorase teoreemist kiirte pikkuste ruudud: ![]() ![]() |
![]() Young'i katse. Tekib interferents - liitlaine amplituudi sõltuvus faasinihkest. | ||||||
Lahutades esimesest võrdusest teise, saame
![]() millest saamegi teepikkuste vahe ![]() (juhul, kui ![]()
Heledate ja tumedate ribade asukohad on nüüd
määratud kiirte käiguvahega - teepikkuste vahe
|
| ||||||
Oleks nagu lihtne katse, aga kui seda mujal proovima hakati, ei tulnud enamasti midagi välja. Tänapäeval teatakse, et katse õnnestumiseks peab olema täidetud tingimus:
pilud ![]() kus ![]() ![]() ![]() ( ![]() ![]() |
Youngi katse õnnestub ainult pilude kindla asendi ning laiuste korral. | ||||||
Kui pilu laius on suurem, satub sellesse "mitu
sekundaarallikat" ning juba piludel Young seda ei teadnud, tema kaasaegsed ammugi mitte. Selles, et katse õnnestus, oli paras jagu õnnelikku juhust. Tekkinud poleemika kutsus esile suure hulga katsetajaid ning viis lõppkokkuvõttes laineteooria taassünnile.
|
| ||||||
Fresnel'i katsed. Kus päris teadus võimetu, löövad tihtipeale läbi profaanid. 1811. a. sattus E. Malus' loengule valguse polarisatsioonist teedevalitsuse insener Augustine Fresnel. Loomulikult oli temagi koolis õppinud "õiget" korpuskliteooriat; seda enam köitis noort uurijat lihtne võimalus seletada polarisatsiooni võnkumiste abil. Fresnel asus asja kallale, hea matemaatikuna õnnestus tal muu töö kõrvalt tuletada ülaltoodud interferentsivalemid (olid muidugi juba varem teada, aga mitte Fresnel'ile). Fresneli tähtsamad ja rakenduslikumad tööd on seotud difraktsiooniga, aga alustas ta interferentsikatsetest. Kahe pilu asemel kasutas ta ühe valgusallika kahte optilist kujutist. Nii on näiteks kahe peegli või kahe prisma abil võimalik saada kaks samaväärset kiirtekimpu, mille heledus on tunduvalt suurem kui Young'i kitsastest piludest tulevatel kiirtel.
Veel näitas Fresnel, et
interferentsipilt tuleb selgem ja teravam, kui kasutada
ühevärvilist (monokromaatset) valgust. Maksimumide/miinimumide
asukohti ekraanil saab arvutada Youngi katse valemitest, kui
lugeda |
![]() Fresnel'i kaksikpeegel. | ||||||
Esimene põhjus on muidugi kaduvväike lainepikkus. Kui me liigume
kahe valjuhääldiga ruumis, siis on miinimumide-maksimumide vahekaugus
meetri suurusjärgus - see vastab häälelainete pikkusele sagedusel
330 Hz. Valguslainete korral on vastav arv
Muidugi - kui asetada allikad lähestikku, suurendada ekraani kaugust ning kasutada kujutise vaatamiseks luupi, võime maksimumide vahelist kaugust märgatavalt suurendada. Interferentsi sellegipoolest ei teki.
Põhjus arvatakse olevat kiirgusallikate eripäras. Esiteks kiirgab valjuhääldi
katkematut siinuslainet (mis vastab generaatoris
tekitatavale vahelduvvoolule), valgus aga tekib (näit. hõõglambis)
soojusliikumise poolt
genereeritud juhuslike kiirgusimpulsside jadana. Iga sellise impulsi kestus
on määratud põrgete kestuse ja atomaarsete võngete sumbuvuse
kiirusega. Katseliselt on kindlaks tehtud, et üks aatom
(molekul) kiirgab keskmiselt |
| ||||||
Teiseks: häälelained on pikilained, valgus aga ristlainetus. Pole lootust, et omavahel nurga all olevate võnketasanditega ristlained interfereeruksid - parimal juhul saame mingi Lissajous' kujundi, see aga ei mõjuta mingil moel silmaga tajutava kiirguse intensiivsust. Niisiis, "tavaliste" (on olemas ka ebatavalisi!) valgusallikate korral pole lootagi võnkumiste interferentsiks vajalikku korrastatust. Seda viimast nimetavad füüsikud koherentsuseks, mis sõna-sõnalt ladina keelest tõlgituna tähendab seostatust või kokkukuuluvust. Võnkumiste koherentsuse all mõistetakse faasivahe säilivust ajas ja ruumis; vajaduse korral eristatakse ruumilist ja ajalist koherentsust. |
Koherentseteks nimetatakse (valgus)allikaid, mille poolt kiiratud (valgus)lainete faasinihe on kogu aeg ühesugune. | ||||||
Ülaltoodu järgi peaks ajalise koherentsuse piiriks olema
Tänapäeva tehnoloogia tunneb ka valgusallikaid, kus koherents säilub praktiliselt piiramatu aja jooksul. Need on kvantgeneraatorid - laserid. Nagu nimigi ütleb, põhineb nende töö kvantmehaanikal ja seetõttu käsitleme neid hiljem. |
Tavalised valgusallikad pole koherentsed; kui soovime tekitada valguse interferentsi, peame kasutama sama allika kaht kujutist. | ||||||
Interferents tehnikas. Mõnedel juhtudel tekivad koherentsed allikad iseenesest. Kui tingimused on soodsad, näeme siis vikerkaarevärvilisi ribasid või laike. Tuntuim interferentsi tekitaja on mingi suure murdumisnäitajaga aine õhuke kiht - siis tekib interferents kihi kahelt küljelt peegeldunud valguslainete vahel. |
| ||||||
Samakalde interferents tekib,
kui paralleelne kiirtekimp (päikesevalgus) langeb
tasaparalleelsele plaadile (jääkiht veelombi pinnal). Siis näeme
korraga kaht kiirt: ühte, mis peegeldub (jää)kihi ülemiselt ja
teist, mis peegeldub alumiselt pinnalt. Kuna teise kiire tee on
pikem, hilineb ta faasis ![]() võrra. Arvestades, et optiliselt tihedamas keskkonnas kasvab "optiline tee pikkus" ![]() ![]() ![]() |
![]() Samakalde interferents. | ||||||
Et
murdumisseaduse järgi on
![]() ![]()
Niisiis: kui
![]() ehk ![]() Nii on näiteks peaks ühe millimeetri paksuse klaasplaadi korral olema 30-kraadise nurga all näha 4714. maksimum, 4715.maksimum aga asub 3.7 kaareminuti võrra madalamal. Kas proovime? |
| ||||||
Samapaksuse interferents tekib
juhul, kui vaatame muutuva paksusega kihti mingi kindla nurga all.
Lähtevalemiks võib olla eelmise punkti (samakalde) valem,
ainult et nüüd on muutujaks mitte ![]()
Siit tuleb õige lihtne
tingimus - ![]() Samapaksusribasid oleme kõik näinud, vaadates veepinnal laialivalguvat õlikilet. Vikerkaarevärvilised laigud õli pinnal pole midagi muud, kui kohad, kus nähtavale värvile vastavas lainepikkuses on interferentsimaksimum. Ribade suhteliselt suur laius tuleneb asjaolust, et õlikile on väga õhuke - tema paksus on tõepoolest mikroni suurusjärgus. Seetõttu on ka paksuse kõikumised väikesed ja sama käiguvahe esineb suhteliselt suurtel pindadel. |
![]() Samapaksuse interferents. | ||||||
Ka ülalmainitud Newtoni rõngad on samapaksusribad. Läätse toetuspinnaga risti vaadates näeme korraga kahte kiirt - üht, mis peegeldub alusplaadilt, ja teist, mis peegeldub läätse alumiselt pinnalt. Õhukihi paksus sõltub tsentri kaugusest: ![]() kus ![]() ![]() ![]() ![]() |
![]() Newtoni rõngad kui samapaksusribad. | ||||||
Tavaliselt kasutatakse küll lihtsamaid lähendvalemeid.
Valguse interferentsi kasutatakse optikatööstuses valgusfiltrite valmistamisel. Kui tavaline värvitud klaasist filter laseb valgust läbi küllalt suures lainepikkuste vahemikus, siis kattes klaasalust erineva murdumisnäitajaga ainete täpselt välja arvutatud kihtidega, võime saada filtri, mille läbilaskeriba on vaid mõne nanomeetri laiune. Hoopis huvitava idee peale tulid fotoobjektiivide valmistajad. Kuna interferentsimiinimumi korral kilega kaetud klaas valgust tagasi ei peegelda, järeldasid nad, et "kadunud valgus" peab minema klaasi sisse. Selle tulemusena aga suureneb klaasi läbilaskvus ja objektiiv "näeb paremini". See, nn. selgendatud optika (e. sinine optika) on fotograafias, eriti aga binoklite juures, üsna levinud.
Ja veel üks interferentsi rakendus - kauguste mõõtmine
interferomeetritega. Peegeldavate pindade korral on
interferentsimaksimumide vahe pool lainepikkust ja see lubab
mõõta pinna kaugust (või täpsust) vähem kui 10 nanomeetrise
veaga.
![]() ![]() ![]()
|
| ||||||
Huygens'i-Fresnel'i printsiip. Mida teha vahepealsete punktidega, kus lainefrondi kaugus vaatluspunktist on 0 ja ![]() See ongi Fresnel'i täiendus Huygens'i printsiibile. Kokku saame:
Huygens-Fresneli printsiipi võib vaadelda kui Young'i katse üldistust.Kui Youngil tekkis interferentspilt kahe ava (või pilu) poolt lainefrondist eraldatud piirkondadest tulevate lainete interferentsil, siis nüüd "mängib kaasa" kogu front. Järelikult on igasugused takistused laine levikul kirjeldatavad matemaatiliste piirangutena interferentsi valemis. Käes on jälle üks "üldine eeskiri", mille poole füüsikud kogu aeg püüdlevad. |
Huygens'i-Fresnel'i printsiip seob uue lainefrondi kujunemise sekundaarlainete interferentsiga. NB! Huygens'i-Fresnel'i printsiip töötab mõlemas suunas: interfereeruvad ka põhilainele vastassuunda levivad sekundaarlained.
| ||||||
Kuidas selle järgi arvutada? Alustame lihtsuse mõttes
tasalainest ja vaatleme lõpmatu tasandi kujulise lainefrondi
mingi riba poolt punktis
Punkt ![]() Faasinihe punktidest ![]() ![]() ![]() |
![]() Lainefrondi lõik ![]() | ||||||
Näeme, et osalaine amplituud kahaneb, hilinemine faasis aga
kasvab eemaldumidel punktist ![]() ![]() ![]() Tuleb hakkama saada vektoritega. Neid me küll integreerida ei oska, aga summeerida saab isegi kahte viisi. Kolme vektorit saame liita näiteks rakendades rööpkülikureeglit või viies järgmise liidetava alguse eelmise lõppu |
![]() Vektorite liitmine: b) viies järgmise liidetava alguse eelmise lõppu | ||||||
Tuleme tagasi oma interferentsipildi juurde. Iga ![]() ![]() ![]() ![]()
Liites selliseid vektoreid, saame omapärase spiraalse kõvera, mida nimetatakse Cornu' spiraaliks. Meie poolt otsitavaks summaks on vektor koordinaatide![]() ![]() ![]() ![]() ![]() ![]() |
![]() Siin on liidetud seitsmelt lainefrondi lõigult tulevate sekundaarlainete faasivektorid. | ||||||
Näeme, et takistamata tasalaine amplituud võrdub pooluste
vahelise kaugusega ![]()
Kui kasutada nüüd mehaanikast tuntud koordinaatmeetodit
(vektorite summaks on vektor, mille koordinaadid on võrdsed
liidetavate vektorite vastavate koordinaatide summaga), saame
anda Cornu spiraali parameetrilisel kujul:
![]() |
![]() Faasivektorite summa üle lainefrondi lõigu, mis vastab käiguvahele -1.5 kuni +1.5 lainepikkust. | ||||||
![]() Integreerimispiirkonnaks on siin lainefrondi suvaline osa vahemikus ![]() |
![]() Lõpmatu lainefrondi faasikõver - Cornu' spiraal. | ||||||
Vaatame nüüd graafiliselt, kuidas Fresnel'i meetod võimaldab arvutada difraktsioonipilti sirge servaga tõkke taga. | |||||||
| |||||||
Langegu
tasalaine tõkkele risti; ![]() ![]() ![]()
Joonistame Cornu' spiraali ja
võtame sellelt punktidele |
| ||||||
Nüüd, teades täpset lahendit, võime tuletada ka ligikaudse. Selleks lõikame Cornu spiraali poolust läbiva sirgege pooleks. Joonest allapoole jäävad nüüd meie "plusstsoonid"; nende laius on võrdeline joone alla (peale) jääva spiraali lõigu pikkusega ning neile vastav liidetav amplituudi avaldises - lõikejoone pikkusega spiraali sama keeru kahe lõikepunkti vahel. Selleks, et lainefront tsoonideks jagada, pole vaja isegi spiraali. Kuna lõikepunktid vastavad![]() ![]() ![]() ![]() ![]() |
![]() Fresnel'i tsoonid Cornu' spiraalil. | ||||||
Fraunhoferi difraktsioon. Kõige efektsemalt töötab tsoonide meetod kitsa pilu taga tekkiva kiirgusvälja korral. Pilu taga tekkivat lainet võib sel juhul vaadelda silinderlainena; et difraktsiooniribad on kitsad, võime piisavalt suurel kaugusel silinderpinna kõverust ühe riba piirkonnas mitte arvestada. Saame intensiivsuse sõltuvuse nurgast, mille vaadeldav suund moodustab pilule langeva valguse suunaga.
Esimesel joonisel näidatud suunas (nurk ![]()
Seega on pilu läbinud kiirguse maksimumide tingimus ( ![]()
Siis polegi muud, kui et liituvad paaritud tsoonid, ja kõik samas faasis. Kiirgus võimendub ulatudes (teoreetiliselt) pooleni tsentraalmaksimumi intensiivsusest
Aga see pole ainuke efekt. Kui ühe pilu korral on maksimumid
lamedad (üleminek miinimumile toimub sujuvalt, sedavõrd kui
"avaneb" järgmine tsoon), siis mitme pilu korral, eriti kui
pilude arv on suur, tähendab tühine nurga muutus kaugemate
võrepilude minekut vastasfaasi.
|
Parimaid tulemusi annab Fresnel'i teooria difraktsiooni arvutamisel
![]() Fraunhofer'i difraktsioon pilult.
Kui mingile vaatenurgale vastavad tsoonid "üle ühe" läbipaistmatuks muuta, saame difraktsioonivõre, mida saab kasutada lainepikkuste eristamiseks maksimumile vastava vaatenurga järgi. | ||||||
Sellise, sadadest ja tuhandetest
piludest koosneva difraktsioonivõre taga koosneb laineväli
kitsastest kiirtest, mida eraldavad ulatuslikud peaaegu täiesti
"pimedad" vahemikud. Maksimumide valem vastab kahetsoonilisele
pilule:
![]() kus ![]() ![]() Maksimumidele vastava nurga sõltuvus lainepikkusest võimaldab kasutada difraktsioonivõret spektraalriistana. Tema abil saab lihtsalt ja täpselt mõõta valguse lainepikkust.
|
![]() Intensiivsuste jaotus pilu taha pandud ekraanil. | ||||||
Et leida valguse intensiivsust punktis, mis asub augu taga
allika ja augu tsentriga ühel sirgel, tuleks eelneva põhjal
jagada augule vastav lainefrondi osa tsoonideks. Teeme seda,
lähtudes frondi kaugusele vaatluspunktist: esimese tsooni
piiriks on käiguvahe ![]() ![]() Nagu pilugi korral, sõltub ka siin valguse intensiivsus tsoonide arvust ja pindaladest. Et vähemalt telje lähedal on Fresnel'i tsoonid enam-vähem võrdsete pindaladega (tõestage!), tähendab paarisarv tsoone valgustamata, paaritu arv aga valgustatud punkti. Et kindla raadiusega augu korral sõltub tsoonide arv vaatluspunkti (ekraani) kaugusest, võib augu "varju" keskkoht olla nii hele kui tume. Teljest eemaldumine tähendab ava nihutamist pildil, kus tsoonid on juba välja joonistatud. Proovige seda teha graafiliselt, joonistades paberile tsoonid, värvides paaritud mustaks ja nihutades saadud pildil teist paberilehte, millesse on lõigatud umbes kolme tsooni suurune ava. Püüdke hinnata musta ja valge pinna vahekorda - te näete, et see sõltub ava asendist. Kuna pilt on sümmeetriline, tähendab viimane, et ekraanile tekib heledate ja tumedate kontsentriliste rõngaste süsteem. |
| ||||||
Mis juhtub, kui tõkkeks on ketas? Arutleme järgnevalt: kui tõket ei ole, tuleb kohale kogu valgus. Tõke varjab sellest osa, mis võib olla null, kui varjatud tsoone on paarisarv. Sel juhul peaks varju keskel olema hele täpp. Kui varjatud on paaritu arv tsoone, tuleb kaotsiläinud valgus nullist erinev - keskpunkt peaks olema tumedam. Mõlemale järgnevad vahelduvad kontsentrilised rõngad. Saveljevi õpikus (I. Saveljev. Füüsika, 3. kd., lk. 88) tuuakse arutlus, mille järgi on varju tsentris alati hele täpp. Kumba loogikat uskuda?
Suurte avade või tõkete korral see muidugi ei kehti. Siis on
parem rakendada pooltasandi kohta käivat teooriat.
|
![]() Keralaine difraktsioon. | ||||||
Meie käes on lääts, mis suurendab tema taha jäävaid esemeid. Kuidas selline lääts töötab, milline on tema fookusekaugus ja kuidas tekib kujutis, jäägu teile välja mõelda. Kirjandust võite kasutada. |
| ||||||
Geomeetrilisest optikast mäletame, et optilised riistad sisaldasid läätsi või peegleid. Nende läbimõõt püütakse teha võimalikult suur (et suurendada valgusjõudu), aga tehnilised võimalused on ikkagi piiratud. Seetõttu kujutab iga lääts või diafragma tõket valguslaine levikul, ning see toob kaasa difraktsiooni. |
Valguse difraktsioon paneb piiri optiliste riistade nurklahutusvõimele. | ||||||
Kui läätse asemel oleks lihtsalt ava, oskaksime
difraktsioonipilti arvutada. Pilt koosneb rõngastest millede
raadiused vastavad ava raadiusele vastava Fresnel'i tsooni
laiusele. Et tsoonide laius ava suurenedes kahaneb, tähendab ava suurenemine
rõngaste läbimõõtude vähenemist difraktsioonipildis
(![]() ![]() Rõngaste täpsete läbimõõtude leidmine on tõsine matemaatikaülesanne - selleks tuleb arvutada interferentsipilt ekraani tasandis. Ligikaudse arvutuse skeem on järgmine:vaatame objektiivile (avale) langevas tasalaines kujunevaid Fresnel'i tsoone ning loeme esimese miinimumi asukoha kauguse tsentrist (tsentraalmaksimumist) ligikaudu võrdseks viimase avasse mahtuva tsoomi laiusega ![]()
Lugedes ava "väikeseks"
(st., väike on avasse mahtuvate tsoonide arv), saame mõningate
matemaatiliste manipulatsioonide tulemusel ![]()
Täpne arvutus üle Besseli funktsioonide annab tulemuseks
|
![]() Kahe lähestikuse punkti kujutised geomeetrilise ja laineoptika järgi. Alumisel pildil on difraktsioonirõngad ühte sulanud, kuigi geomeetrilise optika järgi peaksid punktid eraldi näha olema. (1818) | ||||||
Et kristallis paiknevad aatomid korrapäraselt, kihtidena, tekib siinkohal idee uurida kristalli ehitust, kasutades selleks valguskiirte difraktsiooni kristallvõres. Paraku on aatomitevahelised kaugused (suurusjärk 10 nm) oluliselt väiksemad valguse lainepikkusest. Küll aga on võimalik sel otstarbel kasutada röntgenikiiri. |
| ||||||
Esialgu matemaatiliselt võimatuna
tundunud probleemile leidus vapustavalt geniaalne lahendus:
Kujutleme, et vaatame kristalli "servalt". Et aatomid paiknevad
korrapäraselt, on teatud nurkade all vaadates näha "kiht" -
kõik aatomid paistavad olevat ühes tasandis. Sõltuvalt kristalli
omadustest on selliseid nurki, mille all kristall kihtide vahelt
läbi paistab, üsna palju. Juba lihtsaima kuubilise võre korral
saab joonistada hulga tasandeid. Kujutame nüüd, et tasalaine
langeb sellisele kihile mingi nurga all. Kui teha oletus, et
laine peegeldub aatomkihilt, saame maksimumide tingimuseks
![]() |
![]() Bragg'i valem - "peegeldumine aatomtasanditelt" | ||||||
Seose avastas 23-aastane Adealide'i ülikooli tudeng William Lawrence Bragg oma isa, professor William Henry Bragg'i laboris 1913.a. Füüsikaliselt on valem täielik jama (kristallis pole mingeid peegeldavaid tasandeid!), aga ta töötab (miks, selle kohta pakuvad oma selgitusi nii füüsikaline optika kui kvantmehaanika) niivõrd efektiivselt, et isa-poeg Bragg'id said juba 1915.a. nii Nobeli preemia (absoluutne kiirusrekord!) kui ka aadlitiitli. Ka tänapäeval on röntgenstruktuuranalüüs põhiline meetod aine ehituse uurimisel. |
Röntgenstruktuuranalüüs, mille abil on avastatud näiteks pärilikkuseaine DNA struktuur, põhineb ruumilistel tõketel hajuva kiirguse interferentsil | ||||||
|
Laineoptika tarberakenduseks on täisruumiliste fotode valmistamine - holograafia. | ||||||
Korralik hologramm jätab vapustava mulje: kindlas suunas vaadates näeme õhus rippuvat "kangastust", mille tõepärasus lausa sunnib "käega katsuma". Midagi pihku ei jää, käsi läheb viirastusest vabalt läbi, selle tõelisust muutmata. |
| ||||||
Hologrammi võib vaadata eri suundadest, uurida luubiga, uuesti pildistada - ta on niisama tõeline kui oli pildistatav ese. Kahjuks on edu holograafia alal raske tulema ja seetõttu häid hologramme vähe. Asi tahab veel õppimist. |